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Abstract

This paper will prove the convergence of the discrete electrical network approximation for
the solution to the continuous dirichlet problem of the unit rectangle by using the results of
paper by Tyler Johnson and the notes by Profesoor Gunther Uhlmann.

1 Introduction

The motivation to this problem was on proving that if we are given a ”discrete” boundary condition
that takes values of the continuous bounary condition on at least finitely many points, then does
the solution to the discrete dirichlet problem converge to the continuous dirichlet problem. This
problem was explored in Tyler Johnson’s 2012 REU paper, and half of the problem was solved with
the proof of the norm of the continuous solution bounding above the limit supremum of the solution
of the discrete solution. However, bounding below the limit infimum of the solution of the discrete
solution by the continuous solution remained unsolved. By use of Professor Gunther Uhlman’s
results from his notes, the bounding has been proved. A much less generalized version of his proof
will be provided below.

2 Notation

un := The ”linear piecewise” γ-harmonic solution to the discrete dirichlet problem (i.e. un = φn
at the boundary as described in Johnson’s paper.)

ũn := The γ-harmonic minimizer of the gamma norm with ũn = φn at the boundary.
u∞ := The continuous γ-harmonic solution to the dirichlet problem.
φn := The boundary data for the discrete case.
φ := The boundary data for the continuous case, assume in C1.

||a||γ := The gamma norm of a which is
√

(
∫
∂Ω
v2 +

∫
Ω
γΣ( ∂v∂xj

)2). (Note: this is slightly different

from the definition in Johnson’s paper, nevertheless, it will yield the same result in our case of proving
the lim inf inequality)

R := The restriction map from H1(Ω) to H
1
2 (∂Ω)

Lγ := ∂
∂xi

γij
∂
∂xj

as defined in Uhlamann’s notes, and shown to be the same as the map from H

to its dual space.
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3 Set Up

By Tyler Johnson’s paper, we already have

||u∞||γ ≥ lim
n→∞

||un||γ (1)

Thus, if we prove
||u∞||γ ≤ lim

n→∞
||un||γ (2)

then we have

||u∞|| ≤ lim
n→∞

||un||γ ≤ lim
n→∞

||un||γ ≤ ||u∞|| (3)

which implies the limit exists and that

||u∞|| = lim
n→∞

||un||γ (4)

To prove this, we will want to use Theorem 1.4 from Uhlmann’s paper, which states that
”The mapping

F : H1(Ω)→ H−1(Ω)×H
1
2 (∂Ω) (5)

defined by

Fu :=

(
Lγu
Ru

)
, (6)

is an isomorphism. That is, for any f1 ∈ H−1(Ω) andf2 ∈ H
1
2 (∂Ω) there exists a unique

u ∈ H1(Ω) such that

Fu =

(
f1

f2

)
. (7)

This solution u satisfies the estimate

||u||H1(Ω) ≤ C(||f1||H−1 + ||f2||
H

1
2 (∂Ω)

). (8)

A brief outline of the proof in Uhlmann’s paper.
Let us first prove that the mapping is in fact an isomorphism.
By the Riesz representation theorem, we know that Lγ is an isomorphism from H1

0(Ω) (the set
which is the closure of H1 equipped with γ-norm) to H−1(Ω). We will assume that the restriction
map is an isomorphism and that by use of Poincare’s inequality, it has a right bounded inverse (as
Uhlmann’s notes shows) for this paper.

For injectiveness: Suppose F(u) = 0 then R(u) = 0. This implies that u ∈ H1
0 and that Lγ(u) is

isomorphic to F(u) on H1
0. If R(u) = 0 and Lγ(u) = 0 and u ∈ H1

0 which implies that u =0. �

Now, to show that it is surjective, take f1 ∈ H−1(Ω) and f2 ∈ H
1
2 (∂Ω) . Then, pick a w ∈ H1(Ω)

such that R(w) = f2. Taking v ∈ H1
0(Ω) such that Lγv = f1 − Lγw, where Lγv ∈ H−1(Ω) we have

Lγ(v + w) = Lγv + Lγu = f1 − Lγu+ Lγu = f1 (9)

R(v + w) = R(v) +R(w) = 0 +R(w) = R(w) = f2 (10)

Thus, we see that F is bijective.
Now,

F−1Fu = u = F−1

(
f1

f2

)
, hence ||u||H1(Ω) = ||F−1

(
f1

f2

)
||H1(Ω), thus we have ||u||H1(Ω) ≤

C(||f1||H−1(Ω) + ||f2||
H

1
2 (∂Ω)

).
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4 Proof

Now, to prove that ||u∞||γ ≤ limn→∞ ||un||γ
By definition, it is clear that

ũn ≤ un

Hence, proving ||||u∞||γ − ||ũn||γ || → 0 will suffice. To do this, let us note a few things:
Let us assume that there exists c and C > 1 such that 0 < c ≤ γ ≤ C.
For continuous vn we have

||vn||2γ ≤
∫
∂Ω

v2
n + C

∫
Ω

Σ(
∂vn
∂xj

)2

≤ C(

∫
∂Ω

v2
n +

∫
Ω

Σ(
∂vn
∂xj

)2)

≤ C||vn||2H1(Ω).

The same logic applies when using c < γ so we have c1||u||H1 ≤ ||u||γ ≤ C2||u||H1 .
By the theorem mentioned above, we have ||vn||H1(Ω) ≤ C(||Lγvn||H−1(Ω) + ||Rvn||

H
1
2 (∂Ω)

),

where Fvn =

(
Lγvn
Rvn

)
. Setting vn = u∞− ũn, we have that by the definition of the restriction

map, Rvn = φ− φn and that because u∞, ũn are both γ-harmonic and since Lγ is linear, Lγvn = 0.
Thus, we have ||vn||H1(Ω) ≤ C||Rvn||H 1

2 (∂Ω)
= C||φ− φn||

H
1
2 (∂Ω)

≤ C2||φ− φn||H1 .

||φ− φn||2H1 =
∫
∂Ω

(φ− φn)2 +
∫

Ω
Σ(∂(φ−φn)

∂xj
)2.

Since φ, φn ∈ C1, we have ||φ−φn||∞ → 0 as n→ 0. Thus, we need only consider
∫

Ω
Σ(∂(φ−φn)

∂xj
)2.

φ − φn may not be differentiable at finitely many points, however, intuitively, we can consider the
contribution by these points to be 0, so using this let us look at the partial derivatives of φ− φn.

Since φ is defined meaningfully on the boundary, and since the boundary can be considered as
a line, we will just consider the proof that for a continuous function in defined on the real line,
the piecewise linear approximation of that function will have the derivative converge to that of the
original function.

Let Ik := the intervals which make up our interval of interest.
∑
Ik = I

Then, we have to show that
∫
I
(φ′ − φ′n)2ds→ 0 as n→∞ By construction, φ′n = ck, where for

ck, (1 ≤ i ≤ n) is a constant, and by the mean value theorem, we know that φ′(y) = ck for some
y ∈ Ik. Now, since φ′ is continuous, we know that for all ε there exists δ such that |x−y| < δ implies
|φ′(x)−φ′(y)| < ε. Let us pick some ε. Then, there exists some N such that if we divide the interval

into N equal pieces, and let xk−1, xk be the endpoints of the interval, ck = φ(xk)−φ(xk−1)
xk−xk−1

and that

for some y ∈ (xk−1, xk), φ′(y) = ck. Furthermore, because of our choice of large enough N, we have
xk−1, xk ∈ Nδ(ε)(y) whereδ(ε)is chosen such that |p − q| < δ(ε) implies |φ′(sk) − ck| < ε, ∀sk ∈ Ik,
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for 1 < k < n. Then, ∫
I

(φ′ − φ′n)2ds =
∑∫

Ik

(φ′ − φ′n)2ds

=
∑∫

Ik

(φ′ − ck)2ds

≤
∑∫

Ik

(ε)2ds

= ε2
∑∫

Ik

ds

<= ε2

Thus, we see that
∫
I
(φ′−φ′n)2ds→ 0 as n→∞. Therefore, ||φ−φn||2H1 → 0 as n→∞, implying

that ||u∞ − ũn||H1(Ω) → 0 as n→∞. This gives us our desired result of ||u∞||γ ≤ limn→∞ ||un||γ ,
hence the result of ||u∞||γ = limn→∞ ||un||γ as well. �
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